Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters

Main subject
Language
Document Type
Year range
1.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.07.15.21260537

ABSTRACT

Objectives - To characterise within-hospital SARS-CoV-2 transmission across two waves of the COVID-19 pandemic. Design - A retrospective Bayesian modelling study to reconstruct transmission chains amongst 2181 patients and healthcare workers using combined viral genomic and epidemiological data. Setting - A large UK NHS Trust with over 1400 beds and employing approximately 17,000 staff. Participants - 780 patients and 522 staff testing SARS-CoV-2 positive between 1st March 2020 and 25th July 2020 (Wave 1); and 580 patients and 299 staff testing SARS-CoV-2 positive between 30th November 2020 and 24th January 2021 (Wave 2). Main outcome measures - Transmission pairs including who-infected-whom; location of transmission events in hospital; number of secondary cases from each individual, including differences in onward transmission from community and hospital onset patient cases. Results - Staff-to-staff transmission was estimated to be the most frequent transmission type during Wave 1 (31.6% of observed hospital-acquired infections; 95% CI 26.9 to 35.8%), decreasing to 12.9% (95% CI 9.5 to 15.9%) in Wave 2. Patient-to-patient transmissions increased from 27.1% in Wave 1 (95% CI 23.3 to 31.4%) to 52.1% (95% CI 48.0 to 57.1%) in Wave 2, to become the predominant transmission type. Over 50% of hospital-acquired infections were concentrated in 8/120 locations in Wave 1 and 10/93 locations in Wave 2. Approximately 40% to 50% of hospital-onset patient cases resulted in onward transmission compared to less than 4% of definite community-acquired cases. Conclusions - Prevention and control measures that evolved during the COVID-19 pandemic may have had a significant impact on reducing infections between healthcare workers, but were insufficient during the second wave to prevent a high number of patient-to-patient transmissions. As hospital-acquired cases appeared to drive most onward transmissions, more frequent and rapid identification and isolation of these cases will be required to break hospital transmission chains in subsequent pandemic waves


Subject(s)
COVID-19
2.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.01.14.21249791

ABSTRACT

ObjectivesPredicting bed occupancy for hospitalised patients with COVID-19 requires understanding of length of stay (LoS) in particular bed types. LoS can vary depending on the patients "bed pathway" - the sequence of transfers between bed types during a hospital stay. In this study, we characterise these pathways, and their impact on predicted hospital bed occupancy. DesignWe obtained data from University College Hospital (UCH) and the ISARIC4C COVID-19 Clinical Information Network (CO-CIN) on hospitalised patients with COVID-19 who required care in general ward or critical care (CC) beds to determine possible bed pathways and LoS. We developed a discrete-time model to examine the implications of using either bed pathways or only average LoS by bed type to forecast bed occupancy. We compared model-predicted bed occupancy to publicly available bed occupancy data on COVID-19 in England between March and August 2020. ResultsIn both the UCH and CO-CIN datasets, 82% of hospitalised patients with COVID-19 only received care in general ward beds. We identified four other bed pathways, present in both datasets: "Ward, CC, Ward", "Ward, CC", "CC" and "CC, Ward". Mean LoS varied by bed type, pathway, and dataset, between 1.78 and 13.53 days. For UCH, we found that using bed pathways improved the accuracy of bed occupancy predictions, while only using an average LoS for each bed type underestimated true bed occupancy. However, using the CO-CIN LoS dataset we were not able to replicate past data on bed occupancy in England, suggesting regional LoS heterogeneities. ConclusionsWe identified five bed pathways, with substantial variation in LoS by bed type, pathway, and geography. This might be caused by local differences in patient characteristics, clinical care strategies, or resource availability, and suggests that national LoS averages may not be appropriate for local forecasts of bed occupancy for COVID-19.


Subject(s)
COVID-19
3.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.12.24.20248822

ABSTRACT

A novel SARS-CoV-2 variant, VOC 202012/01 (lineage B.1.1.7), emerged in southeast England in November 2020 and is rapidly spreading towards fixation. Using a variety of statistical and dynamic modelling approaches, we estimate that this variant has a 43-90% (range of 95% credible intervals 38-130%) higher reproduction number than preexisting variants. A fitted two-strain dynamic transmission model shows that VOC 202012/01 will lead to large resurgences of COVID-19 cases. Without stringent control measures, including limited closure of educational institutions and a greatly accelerated vaccine roll-out, COVID-19 hospitalisations and deaths across England in 2021 will exceed those in 2020. Concerningly, VOC 202012/01 has spread globally and exhibits a similar transmission increase (59-74%) in Denmark, Switzerland, and the United States.


Subject(s)
COVID-19
5.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.08.01.20166595

ABSTRACT

Unlike forward contact tracing, backward contact tracing identifies the source of newly detected cases. This approach is particularly valuable when there is high individual-level variation in the number of secondary transmissions. By using a simple branching process model, we explored the potential of combining backward contact tracing with more conventional forward contact tracing for control of COVID-19.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL